New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations

نویسنده

  • Rajinder Thukral
چکیده

A new family of eighth-order derivative-freemethods for solving nonlinear equations is presented. It is proved that these methods have the convergence order of eight. These new methods are derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub conjectured that the multipoint iteration methods, without memory based on n evaluations could achieve optimal convergence order of 2n−1. Thus, we present new derivative-free methods which agree with Kung and Traub conjecture for n 4. Numerical comparisons are made to demonstrate the performance of the methods presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS

In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...

متن کامل

Two new three and four parametric with memory methods for solving nonlinear ‎equations

In this study, based on the optimal free derivative without memory methods proposed by Cordero et al. [A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation, Mathematical and Computer Modeling. 57 (2013) 1950-1956], we develop two new iterative with memory methods for solving a nonline...

متن کامل

New Efficient Optimal Derivative-Free Method for Solving Nonlinear Equations

In this paper, we suggest a new technique which uses Lagrange polynomials to get derivative-free iterative methods for solving nonlinear equations. With the use of the proposed technique and Steffens on-like methods, a new optimal fourth-order method is derived. By using three-degree Lagrange polynomials with other two-step methods which are efficient optimal methods, eighth-order methods can b...

متن کامل

A NEW TWO STEP CLASS OF METHODS WITH MEMORY FOR SOLVING NONLINEAR EQUATIONS WITH HIGH EFFICIENCY INDEX

It is attempted to extend a two-step without memory method to it's with memory. Then, a new two-step derivative free class of without memory methods, requiring three function evaluations per step, is suggested by using a convenient weight function for solving nonlinear equations. Eventually, we obtain a new class of methods by employing a self-accelerating parameter calculated in each iterative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012